165 research outputs found

    Biosynthesis of the Pseudomonas aeruginosa Extracellular Polysaccharides, Alginate, Pel, and Psl

    Get PDF
    Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental conditions and host defenses cause differing stresses on the bacteria, and to survive in vastly different environments, P. aeruginosa must be able to adapt to its surroundings. One strategy for bacterial adaptation is to self-encapsulate with matrix material, primarily composed of secreted extracellular polysaccharides. P. aeruginosa has the genetic capacity to produce at least three secreted polysaccharides; alginate, Psl, and Pel. These polysaccharides differ in chemical structure and in their biosynthetic mechanisms. Since alginate is often associated with chronic pulmonary infections, its biosynthetic pathway is the best characterized. However, alginate is only produced by a subset of P. aeruginosa strains. Most environmental and other clinical isolates secrete either Pel or Psl. Little information is available on the biosynthesis of these polysaccharides. Here, we review the literature on the alginate biosynthetic pathway, with emphasis on recent findings describing the structure of alginate biosynthetic proteins. This information combined with the characterization of the domain architecture of proteins encoded on the Psl and Pel operons allowed us to make predictive models for the biosynthesis of these two polysaccharides. The results indicate that alginate and Pel share certain features, including some biosynthetic proteins with structurally or functionally similar properties. In contrast, Psl biosynthesis resembles the EPS/CPS capsular biosynthesis pathway of Escherichia coli, where the Psl pentameric subunits are assembled in association with an isoprenoid lipid carrier. These models and the environmental cues that cause the cells to produce predominantly one polysaccharide over the others are subjects of current investigation

    Expression, Purification, Crystallization and Preliminary X-Ray Analysis of \u3cem\u3ePseudomonas aeuginosa\u3c/em\u3e AlgX

    Get PDF
    AlgX is a periplasmic protein required for the production of the exopolysaccharide alginate in Pseudomonas sp. and Azotobacter vinelandii. AlgX has been overexpressed and purified and diffraction-quality crystals have been grown using iterative seeding and the hanging-drop vapor-diffusion method. The crystals grew as flat plates with unit-cell parameters a=46.4, b=120.6, c=86.9Å, β=95.7°. The cyrstals exhibited the symmetry of space group P21 and diffracted to a minimimum d-spacing of 2.1Å. On the basis of the Matthews coefficient (VM=2.25Å3 Da-1), two molecules were estimated to be present in the asymmetric unit

    Structure of Arabidopsis thaliana 5-methylthioribose kinase reveals a more occluded active site than its bacterial homolog

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic variations exist between the methionine salvage pathway of humans and a number of plants and microbial pathogens. 5-Methylthioribose (MTR) kinase is a key enzyme required for methionine salvage in plants and many bacteria. The absence of a mammalian homolog suggests that MTR kinase is a good target for the design of specific herbicides or antibiotics.</p> <p>Results</p> <p>The structure of <it>Arabidopsis thaliana </it>MTR kinase co-crystallized with ATPγS and MTR has been determined at 1.9 Å resolution. The structure is similar to <it>B. subtilis </it>MTR kinase and has the same protein kinase fold observed in other evolutionarily related protein kinase-like phosphotransferases. The active site is comparable between the two enzymes with the DXE-motif coordinating the nucleotide-Mg, the D238 of the HGD catalytic loop polarizing the MTR O1 oxygen, and the RR-motif interacting with the substrate MTR. Unlike its bacterial homolog, however, the Gly-rich loop (G-loop) of <it>A. thaliana </it>MTR kinase has an extended conformation, which shields most of the active site from solvent, a feature that resembles eukaryotic protein kinases more than the bacterial enzyme. The G- and W-loops of <it>A. thaliana </it>and <it>B. subtilis </it>MTR kinase adopt different conformations despite high sequence similarity. The ATPγS analog was hydrolyzed during the co-crystallization procedure, resulting in ADP in the active site. This suggests that the <it>A. thaliana </it>enzyme, like its bacterial homolog, may have significant ATPase activity in the absence of MTR.</p> <p>Conclusion</p> <p>The structure of <it>A. thaliana </it>MTR kinase provides a template for structure-based design of agrochemicals, particularly herbicides whose effectiveness could be regulated by nutrient levels. Features of the MTR binding site offer an opportunity for a simple organic salt of an MTR analog to specifically inhibit MTR kinase.</p

    Structure of \u3cem\u3eArabidopsis thaliana\u3c/em\u3e 5-Methylthioribose Kinase Reveals a More Occluded Active Site Than its Bacterial Homolog

    Get PDF
    Background: Metabolic variations exist between the methionine salvage pathway of humans and a number of plants and microbial pathogens. 5-Methylthioribose (MTR) kinase is a key enzyme required for methionine salvage in plants and many bacteria. The absence of a mammalian homolog suggests that MTR kinase is a good target for the design of specific herbicides or antibiotics. Results: The structure of Arabidopsis thaliana MTR kinase co-crystallized with ATPγS and MTR has been determined at 1.9 Å resolution. The structure is similar to B. subtilis MTR kinase and has the same protein kinase fold observed in other evolutionarily related protein kinase-like phosphotransferases. The active site is comparable between the two enzymes with the DXE-motif coordinating the nucleotide-Mg, the D238 of the HGD catalytic loop polarizing the MTR O1 oxygen, and the RR-motif interacting with the substrate MTR. Unlike its bacterial homolog, however, the Gly-rich loop (G-loop) of A. thaliana MTR kinase has an extended conformation, which shields most of the active site from solvent, a feature that resembles eukaryotic protein kinases more than the bacterial enzyme. The G- and W-loops of A. thaliana and B. subtilis MTR kinase adopt different conformations despite high sequence similarity. The ATPγS analog was hydrolyzed during the co-crystallization procedure, resulting in ADP in the active site. This suggests that the A. thaliana enzyme, like its bacterial homolog, may have significant ATPase activity in the absence of MTR. Conclusion: The structure of A. thaliana MTR kinase provides a template for structure-based design of agrochemicals, particularly herbicides whose effectiveness could be regulated by nutrient levels. Features of the MTR binding site offer an opportunity for a simple organic salt of an MTR analog to specifically inhibit MTR kinase

    Crystallization and preliminary X-ray analysis of human placental S-adenosylhomocysteine hydrolase

    Get PDF
    A recombinant form of human placental S-adenosylhomocysteine (AdoHcy) hydrolase expressed in E. coli, which was inactivated by a type-I mechanism-based inhibitor, has been crystallized using the hanging-drop vapour-diffusion technique. The crystals grow as fiat plates, with unit-cell dimensions a=96.2, b=173.6, c=142.9A, ct=fl=7=90 °. The crystals exhibit the symmetry of space group C222 and diffract to a minimum spacing of "-~ 2.0 A resolution at the Cornell High Energy Synchrotron Source. On the basis of density calculations two monomers of the tetrameric protein are estimated to be present in the asymmetric unit (Vm = 2.99 ,~3 Da-l). The selfrotation function clearly indicates the location of the noncrystallographic twofold axis.The authors would like to thank Steve Ealick and colleagues at CHESS for access to these facilities. This work is supported by a grant from the NIH (GM29332) to RTB

    Modular Evolution and the Origins of Symmetry: Reconstruction of a Three-Fold Symmetric Globular Protein

    Get PDF
    SummaryThe high frequency of internal structural symmetry in common protein folds is presumed to reflect their evolutionary origins from the repetition and fusion of ancient peptide modules, but little is known about the primary sequence and physical determinants of this process. Unexpectedly, a sequence and structural analysis of symmetric subdomain modules within an abundant and ancient globular fold, the β-trefoil, reveals that modular evolution is not simply a relic of the ancient past, but is an ongoing and recurring mechanism for regenerating symmetry, having occurred independently in numerous existing β-trefoil proteins. We performed a computational reconstruction of a β-trefoil subdomain module and repeated it to form a newly three-fold symmetric globular protein, ThreeFoil. In addition to its near perfect structural identity between symmetric modules, ThreeFoil is highly soluble, performs multivalent carbohydrate binding, and has remarkably high thermal stability. These findings have far-reaching implications for understanding the evolution and design of proteins via subdomain modules

    Co-Operative Biofilm Interactions between Aspergillus fumigatus and Pseudomonas aeruginosa through Secreted Galactosaminogalactan Exopolysaccharide

    Get PDF
    The mold Aspergillus fumigatus and bacterium Pseudomonas aeruginosa form biofilms in the airways of individuals with cystic fibrosis. Biofilm formation by A. fumigatus depends on the self-produced cationic exopolysaccharide galactosaminogalactan (GAG), while P. aeruginosa biofilms can contain the cationic exopolysaccharide Pel. GAG and Pel are rendered cationic by deacetylation mediated by either the secreted deacetylase Agd3 (A. fumigatus) or the periplasmic deacetylase PelA (P. aeruginosa). Given the similarities between these polymers, the potential for biofilm interactions between these organisms were investigated. P. aeruginosa were observed to adhere to A. fumigatus hyphae in a GAG-dependent manner and to GAG-coated coverslips of A. fumigatus biofilms. In biofilm adherence assays, incubation of P. aeruginosa with A. fumigatus culture supernatants containing de-N-acetylated GAG augmented the formation of adherent P. aeruginosa biofilms, increasing protection against killing by the antibiotic colistin. Fluorescence microscopy demonstrated incorporation of GAG within P. aeruginosa biofilms, suggesting that GAG can serve as an alternate biofilm exopolysaccharide for this bacterium. In contrast, Pel-containing bacterial culture supernatants only augmented the formation of adherent A. fumigatus biofilms when antifungal inhibitory molecules were removed. This study demonstrates biofilm interaction via exopolysaccharides as a potential mechanism of co-operation between these organisms in chronic lung disease

    Pseudomonas Aeruginosa Alginate Overproduction Promotes Coexistence with Staphylococcus Aureus in a Model of Cystic Fibrosis Respiratory Infection

    Get PDF
    While complex intra- and interspecies microbial community dynamics are apparent during chronic infections and likely alter patient health outcomes, our understanding of these interactions is currently limited. For example, Pseudomonas aeruginosa and Staphylococcus aureus are often found to coinfect the lungs of patients with cystic fibrosis (CF), yet these organisms compete under laboratory conditions. Recent observations that coinfection correlates with decreased health outcomes necessitate we develop a greater understanding of these interbacterial interactions. In this study, we tested the hypothesis that P. aeruginosa and/or S. aureus adopts phenotypes that allow coexistence during infection. We compared competitive interactions of P. aeruginosa and S. aureus isolates from mono- or coinfected CF patients employing in vitro coculture models. P. aeruginosa isolates from monoinfected patients were more competitive toward S. aureus than P. aeruginosa isolates from coinfected patients. We also observed that the least competitive P. aeruginosa isolates possessed a mucoid phenotype. Mucoidy occurs upon constitutive activation of the sigma factor AlgT/U, which regulates synthesis of the polysaccharide alginate and dozens of other secreted factors, including some previously described to kill S. aureus. Here, we show that production of alginate in mucoid strains is sufficient to inhibit anti-S. aureus activity independent of activation of the AlgT regulon. Alginate reduces production of siderophores, 2-heptyl-4-hydroxyquinolone-N-oxide (HQNO), and rhamnolipids—each required for efficient killing of S. aureus. These studies demonstrate alginate overproduction may be an important factor driving P. aeruginosa coinfection with S. aureus

    K2 Discovers a Busy Bee: An Unusual Transiting Neptune Found in the Beehive Cluster

    Full text link
    Open clusters have been the focus of several exoplanet surveys but only a few planets have so far been discovered. The \emph{Kepler} spacecraft revealed an abundance of small planets around small, cool stars, therefore, such cluster members are prime targets for exoplanet transit searches. Kepler's new mission, K2, is targeting several open clusters and star-forming regions around the ecliptic to search for transiting planets around their low-mass constituents. Here, we report the discovery of the first transiting planet in the intermediate-age (800 Myr) Beehive cluster (Praesepe). K2-95 is a faint (Kp=15.5mag\mathrm{Kp = 15.5\,mag}) M3.0±0.5\mathrm{M3.0\pm0.5} dwarf from K2's Campaign 5 with an effective temperature of 3471±124K\mathrm{3471 \pm 124\,K}, approximately solar metallicity and a radius of 0.402±0.050R\mathrm{0.402 \pm 0.050 \,R_\odot}. We detected a transiting planet with a radius of 3.470.53+0.78R\mathrm{3.47^{+0.78}_{-0.53} \, R_\oplus} and an orbital period of 10.134 days. We combined photometry, medium/high-resolution spectroscopy, adaptive optics/speckle imaging and archival survey images to rule out any false positive detection scenarios, validate the planet, and further characterize the system. The planet's radius is very unusual as M-dwarf field stars rarely have Neptune-sized transiting planets. The comparatively large radius of K2-95b is consistent with the other recently discovered cluster planets K2-25b (Hyades) and K2-33b (Upper Scorpius), indicating systematic differences in their evolutionary states or formation. These discoveries from K2 provide a snapshot of planet formation and evolution in cluster environments and thus make excellent laboratories to test differences between field-star and cluster planet populations.Comment: 14 pages, 8 figues. Accepted for publication in A

    <i>Pseudomonas aeruginosa</i> AlgF is a protein-protein interaction mediator required for acetylation of the alginate exopolysaccharide

    Get PDF
    Enzymatic modifications of bacterial exopolysaccharides enhance immune evasion and persistence during infection. In the Gram-negative opportunistic pathogen Pseudomonas aeruginosa, acetylation of alginate reduces opsonic killing by phagocytes and improves reactive oxygen species scavenging. Although it is well-known that alginate acetylation in P. aeruginosa requires AlgI, AlgJ, AlgF, and AlgX, how these proteins coordinate polymer modification at a molecular level remains unclear. Here, we describe the structural characterization of AlgF and its protein interaction network. We characterize direct interactions between AlgF and both AlgJ and AlgX in vitro, and demonstrate an association between AlgF and AlgX, as well as AlgJ and AlgI, in P. aeruginosa. We determine that AlgF does not exhibit acetylesterase activity and is unable to bind to polymannuronate in vitro. Therefore, we propose that AlgF functions to mediate protein-protein interactions between alginate acetylation enzymes, forming the periplasmic AlgJFXK (AlgJ-AlgF-AlgX-AlgK) acetylation and export complex required for robust biofilm formation.</p
    corecore